The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II

نویسندگان

  • Tanja Dapa
  • Sébastien Fleurier
  • Marie-Florence Bredeche
  • Ivan Matic
چکیده

Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competition of Escherichia coli DNA Polymerases I, II and III with DNA Pol IV in Stressed Cells

Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at approximately 200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activ...

متن کامل

General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli.

Microbial cells under growth-limiting stress can generate mutations by mechanisms distinct from those in rapidly growing cells. These mechanisms might be specific stress responses that increase mutation rates, potentially altering rates of evolution, or might reflect non-stress-specific processes in rare growing cells. In an Escherichia coli model system, both frameshift reversion mutations and...

متن کامل

RpoS, the stress response sigma factor, plays a dual role in the regulation of Escherichia coli's error-prone DNA polymerase IV.

RpoS, Escherichia coli's general stress response sigma factor, regulates error-prone DNA polymerase IV (Pol IV) (encoded by the dinB gene). Pol IV is induced in stationary-phase cells, and thereafter, levels of the protein remain elevated for several days of continuous incubation. This induction and persistence in stationary-phase cells are dependent on RpoS. Data presented here show that this ...

متن کامل

Effect of translesion DNA polymerases, endonucleases and RpoS on mutation rates in Salmonella typhimurium.

It has been suggested that bacteria have evolved mechanisms to increase their mutation rate in response to various stresses and that the translesion DNA polymerase Pol IV under control of the LexA regulon and the alternative sigma factor RpoS are involved in regulating this mutagenesis. Here we examined in Salmonella enterica serovar Typhimurium LT2 the rates for four different types of mutatio...

متن کامل

Effect of SOS-induced Pol II, Pol IV, and Pol V DNA polymerases on UV-induced mutagenesis and MFD repair in Escherichia coli cells.

Irradiation of organisms with UV light produces genotoxic and mutagenic lesions in DNA. Replication through these lesions (translesion DNA synthesis, TSL) in Escherichia coli requires polymerase V (Pol V) and polymerase III (Pol III) holoenzyme. However, some evidence indicates that in the absence of Pol V, and with Pol III inactivated in its proofreading activity by the mutD5 mutation, efficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 206  شماره 

صفحات  -

تاریخ انتشار 2017